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Pharmacometric approaches to 
categorical data analysis: 
an example based on the relationship 
between remimazolam concentration 
and the modified observer's 
assessment of alertness and sedation 
scale
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Introduction
• Observer’s Assessment of Alertness and Sedation (OAAS) 
Scale was originally developed by Chernik et al. (1990)

• To evaluate the ability of flumazenil (GABA-A antagonist) to reverse 
sedation induced by benzodiazepines (GABA-A agonists)

Table 1. Assessment categories of the observer’s assessment of alertness/sedation scale (Chernik et al. 1990). 
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Introduction
• Modified OAAS Scale is Not standardised

• Number of scores can be reduced to facilitate implementation (e.g. 
Peters et al. 1999 à 4 categories) 

• Number of scores can be increased to better characterise deep
sedation (e.g. addition of a noxious stimuli or “truly” noxious stimuli 
[EOAA/S, Kim et al. 2015]) or agitation (e.g. Casati et al. 1999, Drake 
et al. 2006)

• Characteristics of ordinal data:
• Finite number of scales (e.g. 4, 5, 6, 7 or even further reductions or 

extensions)
• Order or ranking in scales (e.g. 5 [Awake] > 4 > … > 1 >0 [fully sedated])
• Distance between categories cannot be defined or is meaningless (e.g. 

patient moving from 4 to 2 cannot be considered a doubling in sedation)
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Introduction

• Data are sometimes treated 
as continuous data: 

• The model suggests an OAAS of 
6 at exp(-2) = 0.14  ng/mL à
violates finite number property

• The model suggest an OAAS of 
3.5 at exp(0.5) = 1.65 ng/mL
à violates property of non-
equal distances between scales. 

• Additionally, normality
assumption of the model does 
not hold at the extremes

Figure 1. Exposure-response relationhip for dexmedetomidine and OAAS. 
European Public Assessment Report, Dexdor, dexmedetomidine, EMEA/H/C/002268
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Introduction
• To preserve the properties of ordinal data, we can model the 
probability of observing a certain MOAAS category

• Multiple approaches described:
• Multinomial logistic model (Hedeker D. 2003, Agresti A. 2010)
• Proportional odds model (Sheiner LB et al. 1994, Agresti A. 2010)
• Adjacent categories model (Agresti A. 2010)
• Differential odds model (Kjellsson MC et al. 2008)
• Discrete-time markov model(s) (Karlsson MO et al. 2000)
• (Minimal) continuous-time markov model (Schindler et al. 2017, 

Bergstrand et al. 2009)
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Modelling Probability
• Modelling Probabilities: 

• Probability is defined as the ratio of the 
number of events (of interest) to the total 
number of events.

• Scale is limited to 0-1 (or 0 to 100%)
• 0: no event
• 1: event

• Enforced by expit transform: 
• exp(x)/(1 + exp(x))

• Reversed to infinite scale by logit 
transform: 

• ln(x/(1-x))
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Logistic Model

• Model the probability of a 
single event

• Increasing the intercept 
(θ0), shifts curve to the 
right

Model	definition:
𝑝 𝑌 = 𝑗 𝑥 = !"#(%!&∑"#$ %"("& ) )

+&!"#(%!&∑"#$ %"("& ) )
j = category of interest
i = individual categories in summation
k = number of parameters/variables
θ = fixed effects
η = random effects

Θ0 = 0

Θ0 = -2

Θ0 = 2
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Logistic Model

• Increasing the slope (θk), 
shifts steepness of the 
curve 

Model	definition:
𝑝 𝑌 = 𝑗 𝑥 = !"#(%!&∑"#$ %"("& ) )

+&!"#(%!&∑"#$ %"("& ) )
j = category of interest
i = individual categories in summation
k = number of parameters/variables
θ = fixed effects
η = random effects

Θk = 1

Θk = 0.5

Θk = 2
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Logistic Model

• Inverse of the model is 
probability of other event

Model	definition:
𝑝 𝑌 = 𝑗 𝑥 = !"#(%!&∑"#$ %"("& ) )

+&!"#(%!&∑"#$ %"("& ) )
j = category of interest
i = individual categories in summation
k = number of parameters/variables
θ = fixed effects
η = random effects

Pr(Y=1) = 
exp(x)       

(1 + exp(x))

Pr(Y=0) = 
exp(-x)       

(1 + exp(-x))
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Multinomial logistic model

• Model structure ensures
that sum of all
probabilities is 1

Model	definition

𝑝 𝑌 = 𝑗 𝑥 = !"#(%!%&∑"#$
& %"%("%& )%)

+& ∑'#$
%($ !"#(%!'&∑"#$

& %"'("'&)')

j = category of interest
i = individual categories in summation
k = number of parameters/variables
θ = fixed effects
η = random effects

Pr(Y=3)
Pr(Y=0)

Pr(Y=2)
Pr(Y=1)
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Proportional Odds Model
• Intercept (θ0) parameter is used to force 

order, thus we can have Θ0, 1st category > Θ0, 2nd 
category > Θ0, 3rd category 

• Proportional odds assumption: Predictor 
function is similar for all categories

• We are now modelling cumulative Pr(Y≤0), 
Pr(Y≤1), etc.  

Model	definition

𝑝 𝑌 ≤ 𝑗 𝑥 = !"#(%!%& ∑"#$
& %"("&) )

+&∑'#$
%($ !"#(%!'& ∑"#$

& %"("&) )

j = category of interest
i = individual categories in summation
k = parameter number
p = number of parameters/variables
θ = fixed effects
η = random effects

Θ0 = 0

Θ0 = -2

Θ0 = 2
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Proportional Odds Model

Model	definition

𝑝 𝑌 ≤ 𝑗 𝑥 = !"#(%!%& ∑"#$
& %"("&) )

+&∑'#$
%($ !"#(%!'& ∑"#$

& %"("&) )

j = category of interest
i = individual categories in summation
k = parameter number
p = number of parameters/variables
θ = fixed effects
η = random effects

𝑝(Y = 0) = 𝑝 𝑌 ≤ 0 𝑥
𝑝(Y = 1) = 𝑝 𝑌 ≤ 1 𝑥 − 𝑝 𝑌 ≤ 0 𝑥
…
𝑝(Y = j) = 1 −𝑝 𝑌 ≤ 𝑗 − 1 𝑥

Pr(Y=1)

Pr(Y=0)

Pr(Y=2)
Pr(Y=3)

14



Alternative models
• Adjacent Categories Model

• Probability of each MOAAS scale is compared to the next lower 
MOAAS scale

• Differential Odds Model
• Extension of proportional odds model
• Predictor function can vary per scale but only within boundaries 

of other scales
• 𝜃i5 > 𝜃i4 >  …. > > 𝜃i0
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Markov model

P(Y=5)

P(Y=4)

P(Y=3)

• In Markov Models, we model the probability of the 
current MOAAS score given that a certain MOAAS score 
was observed previously (i.e. transition probabilities)

P(Y=2)

P(Y=1)

P(Y=0)

Pr(Current [C] = 4 | previous [P] = 5, x) = model

Pr(C=3 | P = 5, x) = model
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Discrete-Time Markov Model

• All previous time-independent model structures can be 
extended to a Markov Model

Example Model Definition (extension of Proportional Odds Model): 
The probability of a MOAAS j at the current occasion (t) given that a MOAAS l was observed at the 
previous occasion (t- δ); 

P(Yt ≥ j|Yt−δ = l, 𝑥) = !"#(%!%)& ∑"#$
& %"("&) )

+&∑'#$
%($ !"#(%!%*',)*'& ∑"#$

& %"("&) )

P(Yt = j|Yt−δ = l) =  P(Yt ≥ j+1 | Yt-δ = l) − P(Yt ≥ j| Yt-δ = l)
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Continuous-Time Markov model

• Example structure (compartmental approach)

P(Y=5) P(Y=4) P(Y=3) P(Y=2) P(Y=1) P(Y=0)

k54m

k45m

k43m

k34m

k32m

k23m

k21m

k12m

k10m

k01m
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Example with 
remimazolam
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Aim

• In this study, we evaluated which approach is most 
suitable to analyse the MOAA/S scale. 

• Emphasis on clinical implications between approaches 
described in literature (i.e. differences in exposure-response 
relationship)
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Methods

• Remimazolam dataset
• Four procedural sedation datasets of remimazolam

Clinical trial Number of subjects Number of observations
ONO-2745-01 35 1190
ONO-2745-02 8 296
CNS7056-001 54 1241
CNS7056-017 20 604

Table 2. Included studies
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Methods

• Step 1. Obtain post-hoc Pharmacokinetic Empirical 
Bayes Estimates (EBEs) using the population 
pharmacokinetic model as described by Zhou et al. 
(Clin. Transl. Sci., 2021)
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Methods
• Step 2. Develop MOAAS models using sequential approach

• Parameters estimation
• Maximum likelihood estimation
• LaPlacian algorithm in NONMEM version 7.5

• Different structural models
• Drug effect models: Linear, emax or sigmoid drug effect 
• Delay PK and PD evaluated: with effect compartment

• Interindividual variability 
• Explored on structural model parameters and drug effect parameters

• Model evaluation: 
• Visual predictive checks (95% prediction interval, n = 100 simulations):

• Proportion observations over concentration range and over time
• Transitions over concentration range and over time

• Numerically
• Objective function value (improvement of 3.84, p<0.05, df=1)
• Relative standard errors of model parameters (including variance estimates, <50%)
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Results
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Time-independent

Models Multinomial Logistic Model Proportional Odds Model Adjacent Categories Model Differential Odds Model
OFV 5033.7 4774.0 4785.6 No improvement in OFV
RSE (%), mean [min-max] 9.1 [5.6 - 11.5] 15.6 [7.6 – 36.9] 23.2 [7.2– 36.3]
Structural model parameters (n) 11 8 8
Stochastic model parameters (n) 5 2 2
Effect compartment Yes Yes Yes
Drug effect Linear Emax Emax
Time dependent: discrete time 

Models
OFV
RSE (%), mean [min-max]
Structural model parameters (n)
Stochastic model parameters (n)
Effect compartment
Drug effect
Time dependent: continuous time 

Models
OFV
RSE (%), mean [min-max]
Structural model parameters (n)
Stochastic model parameters (n)
Effect compartment
Drug effect

Table 3. Overview of model results
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Time-independent

Models Multinomial Logistic Model Proportional Odds Model Adjacent Categories Model Differential Odds Model
OFV 5033.7 4774.0 4785.6 No improvement in OFV
RSE (%), mean [min-max] 9.1 [5.6 - 11.5] 15.6 [7.6 – 36.9] 23.2 [7.2– 36.3]
Structural model parameters (n) 11 8 8
Stochastic model parameters (n) 5 2 2
Effect compartment Yes Yes Yes
Drug effect Linear Emax Emax
Time dependent: discrete time 

Models Markov Model (extension of 
Multinomial Logistic Model)

Markov Model (extension of 
Proportional Odds Model)

Markov Model (extension of 
Adjacent Categories Model)

Markov Model (extension of 
Differential Odds Model)

OFV 4182.4 4016.3 3968.0 No improvement in OFV
RSE (%), mean [min-max] 26.7 [7.7 – 103.9] 18.6 [3.5 – 74.0] 24.0 [8.4 – 51.1]
Structural model parameters (n) 33 32 32
Stochastic model parameters (n) 1 1 1
Effect compartment Yes Yes Yes
Drug effect Sigmoid Emax Emax
Time dependent: continuous time 

Models
OFV
RSE (%), mean [min-max]
Structural model parameters (n)
Stochastic model parameters (n)
Effect compartment
Drug effect

Table 3. Overview of model results
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Time-independent

Models Multinomial Logistic Model Proportional Odds Model Adjacent Categories Model Differential Odds Model
OFV 5033.7 4774.0 4785.6 No improvement in OFV
RSE (%), mean [min-max] 9.1 [5.6 - 11.5] 15.6 [7.6 – 36.9] 23.2 [7.2– 36.3]
Structural model parameters (n) 11 8 8
Stochastic model parameters (n) 5 2 2
Effect compartment Yes Yes Yes
Drug effect Linear Emax Emax
Time dependent: discrete time 

Models Markov Model (extension of 
Multinomial Logistic Model)

Markov Model (extension of 
Proportional Odds Model)

Markov Model (extension of 
Adjacent Categories Model)

Markov Model (extension of 
Differential Odds Model)

OFV 4182.4 4016.3 3968.0 No improvement in OFV
RSE (%), mean [min-max] 26.7 [7.7 – 103.9] 18.6 [3.5 – 74.0] 24.0 [8.4 – 51.1]
Structural model parameters (n) 33 32 32
Stochastic model parameters (n) 1 1 1
Effect compartment Yes Yes Yes
Drug effect Sigmoid Emax Emax
Time dependent: continuous time 

Models Minimal Markov Model Markov Model

OFV 4616.2 4131.1
RSE (%), mean [min-max] 8.9 [2.8 – 13.1] 15.7 [3.3 – 36.3]
Structural model parameters (n) 8 14
Stochastic model parameters (n) 1 1
Effect compartment No No
Drug effect Emax Emax/Sigmoid

Table 3. Overview of model results

27



Figure 4. Example of simulation of exposure-response relationship

Solid line represents the median, shaded areas represent the 95% prediction interval. 

Maximum of Pr(Y=4)

Half Maximum of Pr(Y=5)
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Results
Model MOAAS5 MOAAS4 MOAAS3 MOAAS2 MOAAS1 MOAAS0

Multinomial Logistic Model
194 246 365 599 1712 2382

Proportional Odds Model
155 180 266 303 522 626

Adjacent Categories Model
168 214 317 442 682 850

Discrete-Time Markov Model (extension of multinomial)
180 260 380 593 1017 1136

Discrete-Time Markov Model (extension of proportional)
178 223 331 466 812 1049

Discrete-Time Markov Model (extension of adjacent)
186 248 330 508 921 1111

minimal Continuous-Time Markov Model
151 194 267 312 504 741

Continuous-Time Markov Model
216 228 293 400 748 961

Table 4. Simulated concentration range (mean) at the (half-)maximum probability of observing a particular MOAAS category
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Results
Figure 5. Comparison between simulation of typical patient after bolus administration (5 mg in 1 min) using
the proportional odds (PO) model and continuous-time markov model (CTMM)

Concentration after bolus 
administration

PO

CTMM
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Figure 6. Comparison between
simulation of typical patient
after bolus administration (5 
mg in 1 min) using the
proportional odds (PO) model 
and continuous-time markov
model (CTMM)



Discussion
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Discussion - models
• Categorical models need fixes in case of missing categories

• Especially, relevant for discrete-time Markov Models in case of 
sparse transitions

• Preserving ordering in the model structure improves overall 
model fit. 

• This is relevant for the time-independent models and discrete-time 
Markov Models. 

• Discrete-time Markov models assume a discrete-time 
interval

• Not very suitable in case of unequal sampling times 
• Not very suitable for extrapolations to different populations & trial 

designs
• Better to use continuous-time Markov models, in case of 
time dependencies

• Comes at the cost of increasing computation times 
• Prevents use of targeting effect-site concentrations
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Discussion – Exposure-Response

• Choice of structural model:
• Changes the interpretation of the exposure-response 

relationship at steady-state, specifically for lower MOAAS 
categories

• Changes the dynamic behaviour of the exposure-response 
relationship at non-steady-state

• Changes the need for an effect compartment, but this could 
be a limitation of the study design. 
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Future studies

• Evaluation of different structural MOAAS models for
other anaesthetic drugs.

• Data available for ABP-700, Dexmedetomidine, Propofol and
Sevoflurane
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Results

• Step 1. Evaluate 
population 
pharmacokinetic model 
performance and obtain 
EBEs (i.e. individual PK 
parameters)

Figure 2. Prediction-corrected visual predictive check of the
population pharmacokinetic model of remimazolam stratified by
study. 

Solid line represents the prediction-corrected median of the observations, 
dashed lines represent the 5th and 95th percentiles of the prediction-
corrected observations. Shaded areas represent the 95% confidence
interval of the prediction-corrected median (red) and 5th and 95th 
percentiles (blue). 



Data fitting
• An example, 

• For a patient at time 0, an observation of MOAAS of 5 is 
made. 

• In a model where all probabilities are assumed to be equal
• -2 Log-Likelihood is defined as:

• Probability(MOAAS=5 | Model parameters, variables) = 1/6
• -2 Log-Likelihood = -2 * natural log(1/6) = 3.58

• In a better model, where probability of observing a MOAAS 5 
is predicted to be higher: 

• -2 Log-Likelihood = -2 * natural log (2/6) = 2.19 

• Parameter estimation minimizes the sum of -2 log-
likelihood for all observed scores



Probabilities versus Odds

• Modelling Odds: 
• Ratio of the number of events to the number of non-events
• Scale is limited to be higher than 0
• Enforced by exponential transform: exp(x)

• Relationship between probabilities and odds: 
• Prob = Odds/(1+Odds), 

• e.g. Odds = 3, Prob = 3 / (1 + 3) = 0.75
• Odds = Prob/(1–Prob), 

• e.g. Prob = 0.75, 0.75/(1–0.75)  = 3



Differential Odds Model

• Example structure

• Predictor function is allowed to vary
• In case of linear example above:

• 𝜃i5 > 𝜃i4 >  …. > > 𝜃i0

𝑝 𝑌 ≤ 𝑗 𝑥 = !"#(%!%& ∑'#$
& %'%(%&))

+&!"#(%!%& ∑'#$
& %'%(%&))

j = category of interest
i = individual parameters in predictor function
Θ = fixed effects
η = random effects



Results
Figure 3. Example Visual predictive check (continuous-time Markov Model)

Dots represent the observed datapoints, shaded areas represent the 95% prediction interval. 


