

Accelerating Anesthetic Drug Discovery and Mechanisms Research with Zebrafish

Stuart A. Forman, M.D., Ph.D. DACCPM, Massachusetts General Hospital

ISAP, October 12, 2018

I am named as a co-inventor on several drug patents that are owned by MGH. I have no direct conflict of interest related to the content of this presentation.

60 Million General Anesthetics Annually in USA

Increasing demands for efficiency & safety.

Increasing age & risk in population.

Increasing outpatient procedures: low tolerance for toxicity.

General Anesthetic Goals:

Reversible Unconsciousness, Amnesia, & Immobilization.

Problems:

<u>Pharmacodynamics:</u> Side-effects include: cardiovascular depression, respiratory compromise, hypothermia, arrhythmias, adrenal suppression, post-operative nausea and vomiting, post-operative delirium, and neurodevelopmental effects in neonates. <u>Pharmacokinetics:</u> Variable and unpredictable.

Risk Factors:

Extremes of age, systemic diseases.

Background: General Anesthetic Pharmacology

Inhaled General Anesthetics

Hydrocarbons Ethers Others $N \equiv \dot{N} - \dot{O}$ Н H-C-CI $H_3C - C - O - C - CH_3$ Chloroform $N = \dot{N} = O$ **Diethyl Ether Nitrous Oxide** $H,C = CH_{2}$ H_oC — CH_o Cyclopropane Ethylene C H $H - C - \dot{C} - O -$ Xe CI CI Enflurane Methoxyflurane **Xenon** F Halothane с_с_о_<u>с_н</u> $F - C - \dot{C} - O - C = \dot{C}$ CI H H H Isoflurane Fluroxene CF₃ H - C - O - C - F-ċ—o—ċ—H H **Sevoflurane** Desilurane US-1990 **US-1995**

1840-1949

1950-1989

1990-

UCSF Feb 2012-4

General Anesthetic Pharmacology

Intravenous General Anesthetics

Ner :

Barbiturates (1930s)

Ketamine (1960s)

Propofol (1977)

Etomidate (1972)

$$H_{3}C - H_{2}C - O - C - N$$

$$H_{3}C - C - H$$

$$H_{3}C - C - H$$

Neuronal Ion Channel Targets of General Anesthetics

	Cys-Loop LGICs				Glu Receptors			K ⁺ Channels			Other
Anesthetic(s)	GABA _A	Glyc	nACh	5HT ₃ A	NMDA	AMPA	Kainate	K _{2P}	K _{IR}	Kv	HCN1
Etomidate	$\uparrow\uparrow\uparrow$	0/ ↑	0	0/↓	0	0	0	0/ ↑	0/↓	ND	0
Alphaxalone	$\uparrow\uparrow\uparrow$	0	0/↓	0/↓	0	0	0	ND	0/↓	0/↓	ND
Ketamine	0	0	$\downarrow\downarrow\downarrow\downarrow$	0/↑	$\downarrow\downarrow$	0	0	0	0/↓	\downarrow	$\downarrow \downarrow \downarrow$
Barbiturates	$\uparrow \uparrow \uparrow$	0/↑	$\downarrow\downarrow$	0/↓	0	$\downarrow\downarrow$	$\downarrow\downarrow$	0	\downarrow	ND	ND
Propofol	$\uparrow \uparrow \uparrow$	1	0	0/↓	0/↓	\downarrow	0	0	0/↓	$\downarrow\downarrow$	$\downarrow\downarrow$
Volatiles	$\uparrow\uparrow$	$\uparrow \uparrow$	$\downarrow\downarrow\downarrow\downarrow$	$\downarrow\downarrow$	$\downarrow\downarrow$	$\downarrow\downarrow$	\downarrow	$\uparrow \uparrow$	1	\downarrow	ND
N ₂ O, Xenon	0/↑	0	$\downarrow\downarrow$	\downarrow	$\downarrow\downarrow$	\downarrow	\downarrow	\uparrow	\uparrow	0	ND

Therapeutic Index (LD50/ED50) range is 2 to 25 Correlates with Potency. Inversely related to # of Ion Channel Targets.

Mechanism-Based Drug Improvements Have Not Yielded a New Clinical General Anesthetic

Most Hypnotic Screening Strategies Have Been Based on GABA_A Receptors

Heusser et al. Functional validation of virtual screening for novel agents with general anesthetic action at ligand-gated ion channels. <u>Mol.</u> <u>Pharmacol.</u> 2013;84(5):670-8.

Middendorp et al. Accelerated discovery of novel benzodiazepine ligands by experiment-guided virtual screening. <u>ACS Chem. Biol.</u> 2014;9(8):1854-9.

McKinstry-Wu et al. Discovery of a novel general anesthetic chemotype using high-throughput screening. <u>Anesthesiology</u>. 2015;122(2):325-33

- 1) Develop an <u>un-biased high-throughput screen</u> for potent reversible sedative-hypnotic drug activity in aquatic vertebrates (zebrafish larvae).
- 2) Screen drug libraries to identify novel potent hypnotics (active at 10 μ M or lower).
- 3) Characterize hits in other animals to assess translational potential.
- 4) Characterize hits in molecular targets to learn about mechanisms.
- 5) Genetically modify zebrafish to investigate importance of possible molecular targets.

Key Collaborators:

Eric Liao, MD-PhD (MGH Plastic & Reconstructive Surgery)– CRISPR in zebrafish. John Porco, PhD & Scott Schaus, PhD (BU Center for Molecular Discovery)– drug library. Joe Cotten, MD-PhD (MGH Anesthesia Critical Care & Pain Med)– rat studies.

- 1) Inexpensive to maintain, easy to breed, reach sexual maturity in 2 months.
- 2) Embryos and larvae require no feeding and are small enough to study in 96-well plates.
- 3) Video behavioral analyses of many animals in parallel, with rapidly evolving sophistication.
- 4) Methods for targeted gene mutations (KO or KI) established.
- 5) Methods for electrophysiology in adults and larvae established.

Zebrafish (7 dpf) Photomotor Responses

MASSACHUSETTS GENERAL HOSPITAL Research Institute

Up to 96 larvae can be studied at a time.

Concentration-responses for both sedation and hypnosis can be established in one expt.

PMR assays are automated, rapid, robust.

Results correlate well with older standard.

Discovery of New Sedative-Hypnotics

2/350 Screened Compounds Show Sedative or Hypnotic Activity

<u>Zebrafish</u> PMR IC50 = 11 μM Spont Act. IC50 = 3 μM

<u>Tadpoles</u> LoRR IC50 = 12 μM

Potency Characterization in Zebrafish and Tadpoles

1.0

0.8

0.6

0.4

0.2

0.0

10-4

Normalized Spont. Activity

Zebrafish PMR IC50 = 13 μ M

Zebrafish PMR IC50 > 30 μM

Mechanistic Characterization of Hits

CMLD003237

CMLD006025/CMLD011815

CMLD006025 affects NMDARs and neuronal nAChRs.

CMLD003237: IV injection in SD rats produces LoRR at 25 mg/kg and higher doses. One structural modification improves potency in zebrafish larvae.

CMLD006025: No LoRR in rats observed after 40 mg/kg IV injection. Structural modifications tested to date eliminate activity in zebrafish larvae.

Note: These are preliminary results.

Our First Transgenic Zebrafish Line: GABA_A $\beta 3^{0/0}$

- в
 - WT AAACCGCAG -----TGACGGGTGTGTCACGCATCGAGCTCCCGCAGTTCTCCATCGTTGACTA +10 bp AAACCGCAGCTACAACACCTGACGGGTGTGTCACGCATCGAGCTCCCCGCAGTTCTCCATCGTTGACTA
 - gRNA AAACCGCAG ----- TGA

in Silico Translation

- WT GYTTDDIEFYWKGGETAVTGVSRIELPQFSIVDYKLVSRNVV...
- +10 bp GYTTDDIEFYWKGGETAATTPDGCVTHRAPAVLHR*

Our First Transgenic Zebrafish Line: GABA_A β3^{0/0}

- 1. We discovered two new compounds with potent sedative-hypnotic activity in a 350-drug library. Screening larger libraries may identify many more.
- 2. Our new drugs apparently act through different mechanisms than currently used intravenous anesthetics, which may provide advantages in clinical application.
- 3. Transgenic zebrafish represent a potentially informative system for studying anesthetic effects on neural circuits.

Forman Lab (EDR5)

Cindy Yang, MD-PhD (Shanghai, PRC) Youssef Jounaidi, PhD (MGH) Jennifer Dai, BS (NYU Medical), Francisco Marte, BS (UPR SoM) Elizabeth Halpin, BS, Jennifer Park, BS (Virginia Tech Carillon SoM), Ryan Fantasia, BS

Joseph Cotten, MD-PhD

MGH Center for Regenerative Medicine Eric Liao, MD-PhD (Plastic & Reconstructive Surgery) Renee Daigle, BS, Kusumika Mukherjee, PhD

BU Center for Medical Discovery John Porco Jr., PhD Scott E. Schaus, PhD Lauren Brown, PhD Richard Trilles, BA Wenging Xu, PhD

\$upport DACCPM Innovation Fund DACCPM Scholar Fund NIGMS (R01-GM128989)

Questions?