Nitrous Oxide activates layer 5 prefrontal neurons via SK2 channel inhibition for antidepressant effect

Author list:

Joseph Cichon^{1,2}, Thomas T. Joseph¹, Andrzej Z. Wasilczuk¹, Max B. Kelz¹, Peter Nagele³

Affiliations:

 ¹Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
²Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
³Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois

Abstract:

Nitrous oxide (N₂O) induces rapid and durable antidepressant effects. The cellular and circuit mechanisms mediating this process are not known. Here we find that a single dose of inhaled N₂O induces rapid and specific activation of layer V (L5) pyramidal neurons in the prefrontal cortex of rodents exposed to chronic stress conditions. N₂O-induced L5 activation rescues a stress-associated hypoactivity state, persists following exposure, and is necessary for its antidepressant action. While NMDA-receptor antagonism has been N₂O's purported mechanism of action, L5 neurons activate independently from NMDA-receptor function and synaptic activity. By examining different molecular and circuit targets, we identify N₂O-induced inhibition of calcium-sensitive potassium (SK2) channels as a primary molecular interaction responsible for driving specific L5 activity along with ensuing antidepressant-like effects.