GABA_A actions of ABP-700 and its Carboxylic Acid Metabolite CPM-Acid: Implications for Toxicological Studies and Clinical Development

Presenting Author: Beatrijs. I. Valk, B.Sc.^{1,2}

Co-authors: Megan L. McGrath, B.Sc.², Douglas E. Raines, M.D.² ¹University of Groningen, University Medical Center Groningen, Department of Anesthesiology, Groningen, The Netherlands

²Department of Anesthesia, Critical Care and, Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts

Background: ABP-700 (also known as cyclopropyl-methoxycarbonyl metomidate) is a soft analog of etomidate. It acts as a positive allosteric modulator of the γ -aminobutyric acid type A (GABA_A) receptor and is rapidly metabolized by non-specific esterases to CPM-acid (CPM-A). In toxicological studies using beagle dogs, convulsive seizures were observed during the final 5 minutes of the ABP-700 infusion or in the minutes to hours afterward. The late timing of the seizures suggests that they were caused by the metabolite, CPM-A. In order to better understand the mechanism of such seizures, the GABA_A receptor pharmacology of ABP-700 and CPM-acid were characterized.

Materials and methods: The concentration-dependent actions of ABP-700 and CPM-acid were defined in oocyte-expressed $\alpha_1\beta_3\gamma_{2L}$ GABA_A receptors using voltage clamp electrophysiology. Potentiation of GABA-mediated currents was characterized by adding increasing concentrations of ABP-700 or CPM-A to an EC₅ GABA concentration (6 μ M). Inhibition of GABA-mediated currents was characterized by adding drug to a receptor-saturating GABA concentration (1000 μ M). The effect of CPM-A on the GABA concentration-response curve was similarly defined using electrophysiological techniques.

Results: The concentration-response curves defining the impact of ABP-700 and CPM-acid on GABA_A receptor-mediated currents evoked by 6 μ M GABA was biphasic, potentiating currents at low (clinically-relevant) concentrations while inhibiting them at very high (toxic) concentrations. The EC₅₀ for current potentiation was 2.3 μ M for ABP-700 (95% CI, 1.623 to 3.309) and 347 μ M for CPM-A (95% CI, 123.9 to 971.7; p=0.0025). The IC₅₀s for current inhibition determined using 1000 μ M GABA were 752 μ M for ABP-700 (95% CI, 657.7 to 859.3) and 1530 μ M for CPM-A (95% CI, 1308 to 1718; p<0.0001). CPM-A (1500 μ M) reduced the peak current amplitude produced by high GABA concentrations from 104% to 64% (p<0.0001) without altering the GABA EC₅₀ (44 μ M versus 45 μ M in the absence and presence of CPM-A, respectively; p = 0.9146).

Conclusion: Inhibition of GABA_A receptors is a well-established mechanism for seizure production. Our studies show that CPM-acid non-competitively inhibits GABA_A receptors at the blood concentrations achieved in beagle dogs that received prolonged high dose infusions of ABP-700. This provides a mechanistic explanation for seizures observed in beagle dogs, a dog breed known to have a relatively low seizure threshold. This concentration is ~100x

higher than that reached in human clinical studies of ABP-700, suggesting that this action is not clinically relevant.