Impact of Morphine Administration Timing on Lipopolysaccharide-Mediated Lethal Shock in Mice

Authors: Tomoko Fukada, M.D¹, Hidehito Kato, PhD.,², Rika Nakayama, M.D.,¹, Hiroko Iwakiri, M.D.,¹, Yuri Tsuchiya, M.D.,¹, Junji Yagi, M.D.,², Makoto Ozaki, M.D.¹

¹Department of Anesthesiology, Tokyo Women's Medical University, School of Medicine

²Department of Microbiology and Immunology, Tokyo Women's Medical University, School of Medicine

Introduction: Sepsis is a severe condition characterized by systemic inflammation, organ dysfunction and failure, and cytokine storm. Morphine, which is routinely used to treat perioperative pain, is a potent immunomodulator.

We recently reported that morphine administration before shock improved the survival rate in a murine model of lipopolysaccharide (LPS)-mediated lethal shock (2012 ASA annual meeting). In this study, we examined whether the timing of morphine administration affects the survival rate and cytokine production in LPS-mediated lethal shock.

Materials and Methods

1. Induction of LPS-mediated lethal shock

All animal procedures and protocols were approved by the Ethics Committee on Animal Experimentation of Tokyo Women's Medical University. Mice (female $\,^{\circ}$ 57BL/6; age: 6-8 weeks; weight: 20-25 g) were injected intraperitoneally with LPS after a subcutaneous injection of α -galactosylceramide (α -GC).

2. Effect of morphine on the survival rate of mice with LPS-mediated lethal shock

Mice were subcutaneously administered 0.8 mg/mouse morphine, or phosphate buffered saline (PBS) 30 min before or after an inducing LPS-mediated lethal shock. The survival rate was recorded every 1-12 h.

3. Effect of morphine on cytokine production in vivo and histological changes

in mice with LPS-mediated lethal shock

Cytokine levels were measured over time, and various organs were removed, and stained using hematoxylin-eosin (HE).

Results

1. The survival rate of mice with LPS-mediated lethal shock

Morphine administration before shock improved the survival rate. However, morphine administration after shock significantly deteriorated the survival rate (Figure).

2. Cytokine production in vivo

Compared with PBS administration, morphine administration before shock inhibited the production of tumor necrosis factor (TNF)- α , interferon (IFN)- γ , monocyte chemotactic protein-1 (MCP-1), and interleukin (IL)-12. However, morphine administration after shock increased the production of TNF- α and did not inhibited the production of other cytokines.

3. Histological changes

Morphine administration before shock inhibited the accumulation of a large number of infiltrates consisting of polymorphonuclear leukocytes and mononuclear cells in the lungs. However, morphine administration after shock did not inhibit the accumulation of infiltrates.

Discussion and Conclusions: The effect of morphine on the immune system changes with shock condition. Morphine administration before shock inhibited cytokine production and improved the survival rate of mice with LPS-mediated lethal shock, which is consistent with the clinical features of severe septic shock. On the other hand, morphine administration after shock enhanced cytokine production and deteriorated survival. Morphine is a double-edged sword; therefore, it is necessary to consider the timing of administration while using morphine.

Summary: In mice with LPS-mediated lethal shock, morphine completely changes the survival rate and cytokine production, and the effects differ depending on the timing of administration.

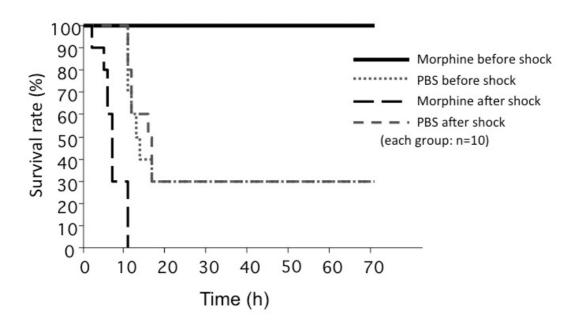


Fig. Survival rate of mice with LPS-mediated lethal shock